Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

E Ye, ${ }^{\text {a }}$ Yong-Wei Zhang, ${ }^{\text {b }}$ Hui Wang, ${ }^{\text {a }}$ Yun-Yin Niu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, ${ }^{\mathbf{b}}$ Henan Chemical Industry Vocational College, Henan University of Technology, Zhengzhou 450042, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: niuyy@zzu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.103$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,5-Bis(3,7-dichloroquinolin-8-yl)-1,3,4-oxadiazole

In the title molecular structure, $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}$, the $1,3,4-$ triazole ring is twisted with an r.m.s. deviation of $0.0035 \AA$. One of the quinolinyl substituents makes a dihedral angle of $55.8(1)^{\circ}$ with respect to the central ring, while the other is rotated by 71.7 (1) ${ }^{\circ}$; these twists are necessary to relieve steric crowding.

Comment

The title compound, (I), is a diaryl-substituted 1,3,4-oxadiazole, an example of which is the previously determined crystal structure of 2,5-diphenyl-1,3,4-triazole (Kuznetsov et al., 1998; Franco et al., 2003). The synthesis of 1,3,4-oxadiazoles is readily achieved by the treatment of aromatic carboxylic acids with hydrazine dihydrochloride in a mixture of orthophosphoric acid, phosphorus pentoxide and phosphorus oxychloride (Bentiss \& Lagrenee, 1999). Unlike the phenyl derivatives, only a few quinolinyl analogs have been reported (Dabhi et al., 1992; Narayana et al., 2005; Zhang et al., 1989).

(I)

The title 1,3,4-triazole incorporates the quinclorac entity, which is used commercially as a potent herbicide (Grossmann, 1998), into its structure (Fig. 1). The 1,3,4-triazole ring is twisted with an r.m.s. deviation of $0.0035 \AA$. One of the quinolinyl substituents (containing atom N1) makes a dihedral angle of $55.8(1)^{\circ}$ with respect to the central ring, while the other quinolyl ring (containing atom N4) is rotated by 71.7 (1) ${ }^{\circ}$. These large twists arise from steric interactions; in contrast, the diphenyl analog is essentially planar (Kuznetsov et al., 1998; Franco et al., 2003).

Experimental

To a mixture of quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) ($24.2 \mathrm{~g}, 0.1 \mathrm{~mol}$) and hydrazinium sulfate ($6.5 \mathrm{~g}, 0.05 \mathrm{~mol}$), which was dissolved in a mixture of 85% orthophosphoric acid (27 ml), were added phosphorus pentoxide ($42.6 \mathrm{~g}, 0.3 \mathrm{~mol}$) and phosphorus

Received 24 May 2006 Accepted 25 May 2006
\qquad
oxychloride ($46.0 \mathrm{~g}, 0.1 \mathrm{~mol}$). The viscous liquid was heated at 413 K for 4 h . The cooled mixture was poured on to crushed ice. Sodium hydroxide was added until the solution registered a neutral pH . The resulting white solid was collected, washed with water and then dried and purified by recrystallization from ethanol in about 80% yield (m.p. 508-509 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}$

$M_{r}=462.10$
Orthorhombic, P ecn
$a=14.1016$ (8) \AA
$b=9.8811$ (6) \AA
$c=27.016$ (2) \AA
$V=3764.4(4) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.631 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.65 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.27 \times 0.17 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEX-II area-detector diffractometer
φ and ω scans
Absorption correction: none
4317 independent reflections
2953 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.5^{\circ}$
21631 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.103$
$S=1.02$
4317 reflections
262 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0437 P)^{2}\right. \\
& \quad+1.1566 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

We thank Luoyang Normal College for the diffraction measurements and the Henan Province Excellent Young Foundation (No. 0612002800), the China Postdoctoral Science Foundation (No. 2003033525) and the University of Malaya for supporting this study.

References

Bentiss, F. \& Lagrenee, M. (1999). J. Heterocycl. Chem. 36, 1029-1032.
Bruker (2004). SAINT (Version 7.12A), SHELXTL (Version 5) and SMART (Version 7.12A). Bruker AXS Inc., Madison, Winsonsin, USA.
Dabhi, T. P., Shah, V. H. \& Parikh, A. R. (1992). J. Inst. Chem. (India), 64, 4748.

Franco, O., Reck, G., Orgzall, I., Schultz, B. W. \& Schulz, B. (2003). J. Mol. Struct. 649, 219-230.
Grossmann, K. (1998). Weed Sci. 46, 707-716.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuznetsov, V. P., Patsenker, L. D., Lokshin, A. I. \& Tolmachev, A. V. (1998). Kristallografiya, 43, 468-477. (In Russian.)
Narayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. \& Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638-4644.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Z. Y., Feng, X. M., Liu, H. X., Chen, M. Q. \& Liu, Y. B. (1989). Chin. J. Inorg. Chem. 9, 355-361. (In Chinese.)

[^0]: (C) 2006 International Union of Crystallography All rights reserved

